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In late 2021, highly pathogenic avian influenza A(H5N8)
clade 2.3.4.4b viruses were detected in domestic ducks
in poultry markets in Cambodia. Surveillance, biosafety,
and biosecurity efforts should be bolstered along the
poultry value chain to limit spread and infection risk at the
animal-human interface.

Since 2014, highly pathogenic avian influenza vi-
ruses (HPAIVs) with H5 hemagglutinin (HA)
genes grouped in the genetic clade 2.3.4.4 have spread
globally causing severe outbreaks in Africa, Europe,
Asia, and most recently, North America (1). These vi-
ruses cause devastating outbreaks in poultry, rapidly
evolve, and continuously reassort with other avian
influenza viruses (AlVs), posing a threat to food secu-
rity in many parts of the world and substantial zoo-
notic infection risk.

The Study
Since 2017, the Institut Pasteur du Cambodge and
National Animal Health and Production Research
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Institute in Cambodia have partnered with the Food
and Agriculture Organization of the United Nations
to enhance ongoing longitudinal AIV surveillance
in live bird markets and poultry storage facilities
throughout Cambodia. This active surveillance re-
veals high levels of AIV circulation with 30%-50% of
ducks and #20%-40% of chickens testing positive for
various influenza A subtypes. Most detected HPAIVs
were H5N1 HA clade 1 viruses during 2005-2014 and
H5N1 HA clade 2.3.2.1c viruses since 2014; H5N6
clades 2.3.4.4g and 2.3.4.4h were detected sporadi-
cally during 2018-2020 (Appendix 1 Table 1, https://
wwwnc.cdc.gov/EID/article/29/1/22-0934-App1.
pdf). Other subtypes also circulate, including novel
H7Nx low pathogenicity avian influenza viruses
(LPAIVs) (2,3).

During active surveillance of live bird markets
(National Ethics Committee for Health Research Ap-
proval no. 149/NECHR/2020) in late 2021, domestic
ducks (Anas platyrhynchos) at Orussey (Phnom Penh,
n =1), Takmao (Kandal, n = 2), Chba Ampov (Phnom
Penh, n = 1), and Takeo (Takeo, n = 1) tested positive
for HPAIV H5 HA but negative for neuraminidase
(NA) subtype N1 by real time reverse transcription
PCR (RT-PCR). We determined these samples were
the H5NS8 subtype after further RT-PCR analysis (Ap-
pendix 1). Positive samples originated from Orussey
and Chba Ampov markets during week 37, Takmao
market during week 41, and Takeo market during
week 46 of 2021 (Figure 1). Full genome sequencing
on a GridION instrument (Oxford Nanopore Tech-
nologies, https://www.nanoporetech.com) con-
firmed these samples were HPAIV H5N8 and H5 HA
clade 2.3.4.4b (4).

All H5N8 HA sequences from Cambodia en-
coded proteins with 2-4 amino acid differences
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Figure 1. Location of live
bird markets where highly
pathogenic clade 2.3.4.4b avian
influenza A(H5N8) viruses were

Tbong Khmum detected in Cambodia during
2018-2021. The map shows
where both H5N6 and H5N8
subtypes of avian influenza A
were detected.
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relative to the clade 2.3.4.4b candidate vaccine strain
A/ Astrakhan/3212/2020(H5NS8) (Table 1). HA muta-
tions T192 and H276N (according to the H3 number-
ing system) were shared across all H5N8 HA proteins,
whereas A188V occurred in 2 sequences, and E273K,
T312S, and I339K each occurred only once. Those
mutations did not correlate with previously reported
phenotypic traits. Consistent with other clade 2.3.4.4b
HA proteins, H5N8 viruses from Cambodia retained
the HPAIV cleavage site motif, REKRRKR |GLF.
The NA sequences did not contain stalk deletions or
markers of antiviral drug resistance. However, other
genes encoded amino acid residues associated with
increased replication capacity and mammalian patho-
genicity, including V89, V292, D309, R389, and T598
in PB2; G622 in PB1; D30, M43, and A215 in M1; and
542 and M106 in NS proteins (5).

We performed hemagglutination inhibition
assays to assess potential cross-reactivity among
the 2.3.4.4b viruses isolated from ducks in Cam-
bodia by using 2 key reference viruses: A/ Astra-
khan/3212/2020, the recommended candidate
vaccine virus for clade 2.3.4.4.b; and A/domes-
tic_duck/England/074477/2021, a recently iden-
tified clade 2.3.4.4b virus from poultry associated
with human infection in the United Kingdom (6).
H5NS8 viruses from Cambodia with V188, 1192 and
N276 in HA showed good recognition by antiserum
raised against A/ Astrakhan/3212/2020. However,
A/duck/Cambodia/f1PPOreu241D3/2021 (with
1192 and N276, and K339 in HA) and A/duck/
Cambodia/f6T241D4/2021 (with 1192, K273, N276,
5312 in HA) showed reduced recognition by the an-
tiserum (Table 2).

Table 1. Amino acid mutations in hemagglutinin relative to the reference strain A/Astrakhan/3212/2020 in clade 2.3.4.4b avian

influenza A(H5N8) viruses detected in Cambodia, 2021*

H5 clade 2.3.4.4b strain

HA amino acid positiont
2 273 276 312 339

N
©

1

A/Astrakhan/3212/2020 (CVV)t
A/duck/Cambodia/f6T241D4/2021
A/duck/Cambodia/f4K241D3_C/2021
Al/duck/Cambodia/f4K241D4/2021
A/duck/Cambodia/f1PPOreu241D3_C/2021
A/duck/Cambodia/f1PPChba241D6/2021

K S

<< >r®

9
T E H N |
|
|
|
|
|

N
N
N
N
N

*Blank cells indicate no mutation. HA, hemagglutinin.

TAmino acids were numbered according to the hemagglutinin H3 numbering system.
FCandidate vaccine virus reference strain (GISAID accession no. EPI_ISL_1038924; https://www.gisaid.org).
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Table 2. Hemagglutination inhibition titers of isolated virus strains
in study of clade 2.3.4.4b avian influenza A(H5N8) virus detected
in Cambodia, 2021*

Strain Titer
A/duck/Cambodia/f1PPOreu241D3/2021 40
A/duck/Cambodia/f4K241D4/2021 80
A/duck/Cambodia/f4K241D3/2021 80
A/duck/Cambodia/f6 T241D4/2021 40
A/domestic_duck/England/074477/2021 80
A/Astrakhan/3212/2020/2020 (CVV)t 160

*Hemagglutination inhibition titer using ferret antiserum against the
reference virus strain A/Astrakhan/3212/2020.

tCandidate vaccine virus reference strain (GISAID accession no.
EPI_ISL_1038924; https://www.gisaid.org).

The HS5NS8 viruses from Cambodia shared
>95.7% nucleotide sequence homology across their
genomes and formed distinct monophyletic lineages

A B

T144A, N240D,
V526A, V536M Amandarin_duck/Korea/WA585/2021(H:

in maximume-likelihood phylogenies of several genes
(bootstrap support was 100%, except for the ma-
trix protein gene, which was 89%; Appendix Figure
1), implying circulation of a single virus strain >10
weeks from September to November 2021. The H5
HA gene was likely derived from H5N8 viruses that
have caused widespread outbreaks in poultry and
wild birds across Eurasia since early 2020 (7) (Fig-
ure 2). N8 NA gene segments were closest to that
of HPAIV H5N8 detected in wild and domestic wa-
terfowl in China and Korea during 2020-21, sharing
most recent ancestry with NA of A/Cygnus_colum-
bianus/Hubei/116/2020(H5N8) that was collected
in November 2020 (Appendix Figure 1). Both the HA
and MP gene segments were most closely related to
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Figure 2. Phylogenetic analysis of the hemagglutinin genes of clade 2.3.4.4 avian influenza A(H5N8) viruses detected in Cambodia.
Whole-genome sequencing of isolated viruses was performed and phylogenies were constructed using the maximume-likelihood method.

A) Subclades of H5NXx clade 2.3.4.4. Recent isolates from Cambodia

are shown in red, purple, and blue shaded boxes. B) Phylogeny of

avian influenza A(H5N8) clade 2.3.4.4b isolates. Recent isolates from Cambodia are in red font and amino acid mutations are indicated
at select nodes. Candidate vaccine viruses used as reference viruses are in bold font. Closed circles indicate cases of human infection

with avian H5Nx viruses. Scale bars indicate nucleotide substitutions

per site.
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A/brown-headed gull/Tibet/1-1/2021(H5N8), col-
lected in May 2021 (Figure 2, panel B; Appendix Fig-
ure 1). In contrast, the other gene segments encoding
internal virus proteins were derived from LPAIV
(Appendix Figure 1). PB2 and PB1 genes shared com-
mon ancestry with LPAIV detected in ducks in Viet-
nam in 2020. PA and NP genes shared recent common
ancestry with LPAIV isolated in 2019 from wild ducks
in Korea (PA gene) and China (NP gene). The NS
protein gene was most similar to that of LPAIV from
ducks in China in 2018. Overall, HPAIV H5Nx clade
2.3.4.4b showed evidence of extensive genetic reas-
sortment with LPAIV found in wild waterfowl, which
frequently spillover to and from domestic poultry.

In addition to various LPAIVs, multiple H5 sub-
types and clades circulate in Cambodia (Appendix
Table 1). H5N1 clade 2.3.2.1c viruses are detected
regularly. H5NG6 clade 2.3.4.4g viruses were found in
Takeo and Orussey markets in chickens in 2019 and
ducks in 2020, and H5N6 clade 2.3.4.4h viruses were
detected sporadically in Kampot province in late 2018,
Takeo province during 2019-2020, and Phnom Penh
in 2020 (Figures 1, 2; Appendix Figures 2-5). There-
fore, detection of H5NS8 clade 2.3.4.4b viruses in these
same markets is a major concern because further reas-
sortment might occur. Since 2018, outbreaks of reas-
sorted HPAIV H5Nx clade 2.3.4.4b with NA subtypes
N8, N6, N1, N3, and N5 have increased in frequency
(8). These viruses have disseminated intercontinen-
tally across migratory flyways and regionally via
poultry trade, often causing considerable economic
losses. In 2021, H5Nx clade 2.3.4.4b viruses caused
severe outbreaks in Europe, Africa, and Asia, particu-
larly in wild birds in western China and in domestic
poultry in Vietnam (9). Since January 2022, HPAIV
H5N1 clade 2.3.4.4b has been detected in waterfowl,
birds of prey, and poultry across North America (10).

H5NXx clade 2.3.4.4b viruses also pose a zoonotic
risk to humans and other species. In February 2021,
a total of 7 cases of asymptomatic human infections
with HPAIV H5NS8 clade 2.3.4.4b were reported in
poultry farm workers in Russia following a poultry
outbreak (11). H5SN6 clade 2.3.4.4 viruses have caused
79 human infection cases (including 33 cases in 2021)
in China with 32 deaths since 2014 and 1 case in Laos
(12), and 3 cases of H5Nx were reported in Nigeria
(9). HPAIV H5NXx clade 2.3.4.4 viruses have also been
detected in domestic cats in China and Korea (1) and
red foxes in The Netherlands (1), and serologic evi-
dence exists for infection in swine (13). More recently,
HPAIV H5N1 clade 2.3.4.4b containing HA genes
closely related to A/Astrakhan/3212/2020 have
caused human infections in the United Kingdom (14)
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and United States (15). HPAIV H5N1 clade 2.3.3.4b
has not been detected in Cambodia.

Conclusions

Because of the global spread, economic impact, and
zoonotic potential of HPAIV clade 2.3.4.4b viruses,
active, longitudinal surveillance in live bird mar-
kets must be maintained in Cambodia, the Greater
Mekong Subregion, and globally to monitor further
introduction and reassortment events. In addition,
surveillance of influenza-like illness needs to be main-
tained among persons in close contact with infected
or deceased poultry. To combat the spread of HPAIV
in Cambodia and other countries, viral monitoring,
biosafety, and biosecurity efforts should be bolstered
along the poultry value chain. Early warning and rap-
id control will limit infections at the animal-human
interface to reduce potential pandemic risk.

Acknowledgments

We thank persons in the Virology Unit at Institut Pasteur

du Cambodge (IPC) who provided technical expertise and
analysis and fruitful discussions, including Viseth Srey
Horm, Songha Tok, Phalla Y, Sonita Kol, Sarath Sin, Kim

Lay Chea, and Veasna Duong; the support teams at IPC,
including the drivers and facilities personnel who made these
studies possible; all local teams, epidemiologists, veterinary
officers, and other staff from the National Animal Health and
Production Research Institute; Stephanie Meyer and Tom
Lewis for their critical assistance in growing viral isolates and
performing hemagglutination analysis, and the authors and
originating and submitting laboratories of the sequences from
the GISAID database (Appendix 2, https:/ /wwwnc.cde.gov/
EID/article/29/1/22-0934-App2.xIsx).

Work at Institut Pasteur du Cambodge was supported
by the Food and Agriculture Organization of the United
Nations and funded by the United States Agency for
International Development under the Emerging
Pandemics Threats 2 (EPT-2) project. The Melbourne
World Health Organization Collaborating Centre for
Reference and Research on Influenza is supported by the
Australian Government Department of Health.

The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of

the manuscript.

About the Author

Mrs. Edwards serves as project manager for the Pathogen
Evolution Laboratory in the School of Public Health at

the University of Hong Kong. Her research focuses on the
ecology, epidemiology, and evolution of infectious disease
at the human-animal interface.

173



DISPATCHES

References

1.

174

World Organisation for Animal Health (OIE). World animal
health information system (OIE-WAHIS) [cited 2022 Sep 6].
https:/ /wahis.oie.int

Karlsson EA, Horm SV, Tok S, Tum S, Kalpravidh W,

Claes F, et al. Avian influenza virus detection, temporality
and co-infection in poultry in Cambodian border provinces,
2017-2018. Emerg Microbes Infect. 2019;8:637-9.

https:/ /doi.org/10.1080/22221751.2019.1604085
Vijaykrishna D, Deng YM, Grau ML, Kay M, Suttie A,
Horwood PF, et al. Emergence of influenza A(H7N4)

virus, Cambodia. Emerg Infect Dis. 2019;25:1988-91.

https:/ /doi.org/10.3201/eid2510.190506

Thielen P. Influenza whole genome sequencing with integrated
indexing on Oxford Nanopore platforms [cited 2022 Sep 6].
https:/ /doi.org/10.17504/ protocols.io.kxygxm7yzI8j/v1
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D,

Wong FYK, et al. Pandemic potential of highly pathogenic
avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol.
2020;30:€2099. https:/ /doi.org/10.1002/rmv.2099

Oliver I, Roberts J, Brown CS, Byrne AM, Mellon D,
Hansen RDE, et al. A case of avian influenza A(H5N1) in
England, January 2022. Euro Surveill. 2022;27:2200061.
https:/ /doi.org/10.2807/1560-7917.ES.2022.27.5.2200061
Lewis NS, Banyard AC, Whittard E, Karibayev T, Al Kafagi
T, Chvala I, et al. Emergence and spread of novel H5NS,
H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian
influenza in 2020. Emerg Microbes Infect. 2021;10:148-51.
https:/ /doi.org/10.1080/22221751.2021.1872355

Food and Agriculture Organization of the United Nations.
EMPRES-i Global Animal Disease Information System [cited
2022 Sep 6]. https:/ /empres-i.apps.fao.org/diseases

World Health Organization. Antigenic and genetic
characteristics of zoonotic influenza A viruses and

10.

11.

12.

13.

14.

15.

development of candidate vaccine viruses for pandemic
preparedness. October 2021 [cited 2022 Sep 6].

https:/ /apps.who.int/iris/handle/10665/347437

U.S. Department of Agriculture Animal and Plant Health
Inspection Service. 2022 detections of highly pathogenic
avian influenza in wild birds [cited 2022 Mar 15].

https:/ /www.aphis.usda.gov/aphis/ourfocus/animal-
health/animal-disease-information/avian/avian-influenza/
hpai-2022/2022-hpai-wild-birds

Pyankova OG, Susloparov IM, Moiseeva AA, Kolosova NP,
Onkhonova GS, Danilenko AV, et al. Isolation of clade
2.3.4.4b A(H5NS8), a highly pathogenic avian influenza virus,
from a worker during an outbreak on a poultry farm,
Russia, December 2020. Euro Surveill. 2021;26:2100439.
https://doi.org/10.2807/1560-7917 ES.2021.26.24.2100439
World Health Organization. Avian influenza weekly update
number 844. 2022 [cited 2022 May 22]. http:/ /apps.who.int/
iris/handle/10665/351652

Hervé S, Schmitz A, Briand F-X, Gorin S, Quéguiner S,
Niqueux E, et al. Serological evidence of backyard pig
exposure to highly pathogenic avian influenza H5N8

virus during 2016-2017 epizootic in France. Pathogens.
2021;10:621. https:/ /doi.org/10.3390/ pathogens10050621
UK Health Security Agency. Human case of avian flu detected
in UK. 2022 [cited 2022 May 22]. https:/ /www.gov.uk/gov-
ernment/news/human-case-of-avian-flu-detected-in-uk
Centers for Disease Control and Prevention. Reported human
infections with avian influenza A viruses. 2022 [cited 2022 May
22]. https:/ /www.cdc.gov/flu/avianflu/reported-human-
infections.htm

Address for correspondence: Erik A. Karlsson, Institut Pasteur du
Cambodge Virology Unit, 5 Monivong Blvd, PO Box 983, Phnom
Penh, Cambodia; email: ekarlsson@pasteur-kh.org

Emerging Infectious Diseases « www.cdc.gov/eid « Vol. 29, No. 1, January 2023



Article DOI: https://doi.org/10.3201/eid2901.220934

Detection of Clade 2.3.4.4b Avian Influenza
A(H5N8) Virus in Cambodia, 2021

Appendix 1

Materials and Methods

Sample Collection and Screening

We collected tracheal, cloacal, and environmental samples (August 2017-December
2021) from ducks and chickens as described previously (/). We extracted viral RNA by using the
QIAamp Viral RNA Mini Kit (QIAGEN, https://www.qiagen.com) in accordance with the
manufacturer’s protocol. We screened all samples by real-time reverse transcription PCR (RT-
PCR) of the matrix protein gene and then by using H5 HA-specific primers, as previously
described (2). We propagated matrix gene-positive samples, if there was sufficient sample and
high virus concentration (RT-PCR Ct<30), in 10-day-old embryonated chicken eggs for virus
isolation. We tested original isolates for all known subtypes of avian influenza virus by using

influenza multiplex RT-PCR.

Genome Sequencing

We amplified whole genomes of influenza A viruses from Cambodia by using custom
Unil2/Inf-1 and Unil3/Inf-1 barcoded primers (3), kindly provided by Peter Thielen, and SSIII
One-step RT-PCR with Platinum Taq High Fidelity kit (Thermo Fisher Scientific,
https://www.thermofisher.com). We prepared sequencing libraries by using a ligation sequencing
kit (Oxford Nanopore Technologies, https://www.nanoporetech.com). Samples were sequenced
by using the GridION platform (Oxford Nanopore Technologies). We then demultiplexed,
quality trimmed, and filtered sequencing reads by using Porechop software
(https://www.github.com/rrwick/Porechop). We deposited a total of 159 gene segment sequences

obtained from 20 influenza A viruses in GenBank under accession numbers ON716288—446.

To generate the consensus sequence, IRMA (Integrated Resource Management

Applications, https://irma.nps.gov/Portal) was run with default settings. We manually inspected
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consensus sequences for errors, such as insertion-deletion mutations and mixed bases, and
corrected if required. We used a minimum 100-bp cutoff for depth coverage for all gene
segments. The average per sample depth was 46,800 reads (minimum, 6,000; maximum,
150,000; median, 30,000) and the average per gene depth was 38,000 reads (minimum, 13,000;
maximum, 86,000; median, 39,000). Several (4 out of 20) randomly selected viruses underwent
resequencing by the World Health Organization Collaboration Center in Melbourne, Australia,
for confirmation and quality control. Sequences that were problematic at the multibasic cleavage
site were confirmed by using Sanger sequencing at Macrogen (https://www.macrogen.com). A
positive control (A/H3N2) and several negative controls were included at each step of the

sequencing protocol.

Phylogenetic Analysis

We used metadata from Nextstrain (4) (accessed on 2022 Jan 19) to prepare subsets of
HPAIV H5 HA sequences, which were downloaded from the GISAID database (5)
(https://www.gisaid.org, accessed on 2022 Jan 19). We downloaded all available N6 and N8
subtype neuraminidase sequences and genes encoding internal proteins of all HSNx subtype
viruses from GISAID and GenBank. For each of the internal gene datasets, we added the top 10
BLAST matches from GISAID and GenBank that were closest to the HSNx sequences from
Cambodia. We excluded duplicate (according to strain name), laboratory-derived, mixed
subtype, and low coverage (<90% of full length) sequences from downstream analysis. We
aligned sequences with MAFFT v.7.490 (6) and constructed phylogenetic trees by using the best-
fit nucleotide substitution model in IQ-TREE v.2.1.4 (7). We visualized and annotated the trees

by using FigTree v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree).

Hemagglutinin Inhibition Assays

We conducted hemagglutinin inhibition (HI) assays according to standard methods (7).
We treated serum samples with a receptor-destroying enzyme and conducted erythrocyte
adsorption before HI testing. In brief, 1 volume of heat-treated serum sample was added to 4
volumes of receptor-destroying enzyme (APHA Scientific, http://apha.defra.gov.uk/apha-
scientific/index.htm). We incubated the resulting solution for 16 h at 37°C before heat-
inactivation at 56°C for 1 h. We added packed erythrocytes from specific pathogen-free chickens
at a ratio of 1:5 (erythrocyte:serum), incubated at room temperature for 30 min, centrifuged at

1000 xg, and transferred the supernatant to a clean tube. We performed the HI assay at 4°C by
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using 4 hemagglutinating units of the indicated H5 HPAIV strains as antigens, ferret antiserum
against the reference virus, and chicken erythrocytes. We serially diluted serum samples 2-fold
for HI assays starting at a dilution of 1:4 and tested the samples in duplicate. We included control
wells for each sample to test for nonspecific hemagglutination, and positive antiserum and
negative control serum (taken from specific pathogen-free chickens) were also tested for each

assay.

Data Availability

Code and accession numbers are available at https://github.com/vjlab/cambodia-H5NS.
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Appendix Table 1. Influenza A virus H5Nx subtypes isolated from live bird markets and sequenced in study of clade 2.3.4.4b avian
influenza A(H5N8) virus detected in Cambodia, 2017-2021*

Subtype H5NXx viruses detected

(H5 HA clade) 2017 2018 2019 2020 2021 Total

H5N1 (2.3.2.1c) 12 19 33 9 12 85

H5N2 (2.32.1c) 0 1 1 0 0 2
H5N6 (2.3.4.4h) 0 3 1 1 0 5
H5N6 (2.3.4.49) O 0 0 10 0 10
H5N8 (2.3.4.4b) O 0 0 0 5 5
Totals 12 23 35 20 17 110

*H, hemagglutinin; HA, hemagglutinin; N, neuraminidase.

Appendix Table 2. Amino acid mutations in HA from avian influenza A(H5N6) clade 2.3.4.4g viruses detected in Cambodia, 2021*

HA amino acid positiont

1 165 167 192 199 242 276 371 379

(o))
\‘

H5 clade 2.3.4.4g strain name 94 140 1

O X

A/duck/Cambodia/e5PPOreu241D3/2020
A/duck/Cambodia/e5PPOreu241D4/2020
A/duck/Cambodia/e5PPOreu241D8/2020
A/duck/Cambodia/e8T241D6/2020
A/duck/Cambodia/e8T241D5/2020
A/duck/Cambodia/e8T241D9/2020
A/duck/Cambodia/e8T241D10/2020
A/duck/Cambodia/e8T241D15/2020
A/duck/Cambodia/e8T241D16/2020
A/duck/Cambodia/e8T241D11/2020

A

5 6

Alchicken/Vietnam/Raho4-Cd-20-421/2020t V P Q E
| K
| K
| K
| K
| K
| K
| K
| K
| K
|

5
\
L
L
L
L
L
L
L
L
L
L

AAA A A A4 444 ®0|S

7
D
N
N
N
N
N
N
N
N
N
N

rrrrrrrr
Z2ZZZZZZZZZW
mmmmmmmmmm—
>>>>>>>>>>-
MMMMMmMmMmmmm>
Z2ZZ2ZZ2ZZ2ZZZZZZ 3
AOVIVAUVAOOOOAD

K

*Blank cells indicate no mutation. HA, hemagglutinin.

TH5N6 HA segments were compared to the reference strain A/chicken/Vietnam/Raho4-Cd-20-421/2020. Amino acids were numbered according to
the hemagglutinin H3 numbering system.

FCandidate vaccine virus (GISAID accession: EPI_ISL_1379443).

Appendix Table 3. Amino acid mutations in HA from avian influenza A(H5N6) clade 2.3.4.4h viruses detected in Cambodia, 2021*

HA amino acid positiont

H5 clade 2.3.4.4h strain 10 41 60 92 125 142 166 187 192 202 214 222 242 450 536

4
A/Guangdong/18SF020/2018% \%
A/duck/Cambodia/c18MKAP189/2018 M
A/duck/Cambodia/c18MKAP211/2018 M
M
M

==L
00X

A/duck/Cambodia/c18MKAP214/2018
Al/chicken/Cambodia/c9T241C17T/2019
A/duck/Cambodia/e10T241C18/2020 F N N S V R T

5
v 8§ D V N R A \ Q A
|
|
|
|

—A—4—=4-H0
AXXXZ
>>>>-
<<<<<Zg

*Blank cells indicate no mutation. HA, hemagglutinin.

TH5N6 HA segments were compared to the reference strain A/Guangdong/18SF020/2018. Amino acids were numbered according to the
hemagglutinin H3 numbering system.

FCandidate vaccine virus (GISAID accession no. EPI_ISL_337274).
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Appendix Figure 1. Phylogenetic analysis of different genes of avian influenza A(H5N8) viruses detected
in Cambodia. Phylogenies were constructed using the maximum-likelihood method. Recent clade
2.3.4.4b isolates from Cambodia are in red font. Scale bars indicate nucleotide substitutions per site. MP,
matrix protein; NA, neuraminidase; NP, nucleoprotein; NS, nonstructural; PA, polymerase acidic; PB1,

polymerase basic 1; PB2, polymerase basic 2.
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Appendix Figure 2. Phylogenetic analysis of different genes of avian influenza A(H5NG6) viruses detected

in Cambodia. Phylogenies were constructed using the maximum-likelihood method. Recent clade
2.3.4.4g (purple font) and 2.3.4.4h (blue font) isolates from Cambodia are shown. Scale bars indicate

nucleotide substitutions per site. MP, matrix protein; NA, neuraminidase; NP, nucleoprotein; NS,

nonstructural; PA, polymerase acidic; PB1, polymerase basic 1; PB2, polymerase basic 2.
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Appendix Figure 3. Phylogenetic analysis of the hemagglutinin gene of clade 2.3.4.4 viruses generated
using the maximum-likelihood method. Recent isolates from Cambodia are in red font. Scale bar indicates

nucleotide substitutions per site.
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Appendix Figure 4. Phylogenetic analysis of hemagglutinin genes from avian influenza subtype H5NG in

study of clade 2.3.4.4 avian influenza viruses detected in Cambodia. Dendograms were constructed using

maximum-likelihood phylogeny and show phylogeny of avian influenza A(H5NG) clade 2.3.4.4g isolates

from Cambodia. Recent isolates from Cambodia are in blue font and amino acid mutations are indicated

at select nodes. Candidate vaccine viruses used as reference viruses are in bold font. Closed circles

indicate cases of human infection with avian H5N6 clade 2.3.4.4g viruses. Scale bar indicates nucleotide

substitutions per site.
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Appendix Figure 5. Phylogenetic analysis of hemagglutinin genes from avian influenza subtype H5NG6 in
study of clade 2.3.4.4 avian influenza viruses detected in Cambodia. Dendograms were constructed using
maximum-likelihood phylogeny and show phylogeny of avian influenza A(H5N6) clade 2.3.4.4h isolates
from Cambodia. Recent isolates from Cambodia are in purple font and amino acid mutations are
indicated at select nodes. Candidate vaccine viruses used as reference viruses are in bold font. Closed
circles indicate cases of human infection with avian H5NG6 clade 2.3.4.4h viruses. Scale bar indicates

nucleotide substitutions per site.
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